EFFECTS OF THE CONCENTRATION-DEPENDENT
DENSITY ON LIQUID SEPARATION IN A
THERMAL-DIFFUSION COLUMN

B. I. Nikolaev and A. A. Tubin UDC 66.049

An analysis is given for the solution fo a system of equations describing the separation in
a liquid thermal -diffusion column, Similarity numbers are derived for the effects of con-
centration and thermal expansion on the separation, A method is given for calculating the
thermal -diffusion constant that eliminates the effects of concentration on the density.

The concentration dependence of the density has [1] a considerable effect on the separation of liquid
organic mixtures by thermogravitational diffusion, The Jones—Ferry theory [5] has formed the basis of
all previous treatments of liquid separation that take this effect into account [2-4]. The theory is applicable
only to isotopic mixtures and contains numerous simplifying assumptions, which have since been only partly
confirmed. Here we consider the separation of a binary liquid mixture by direct solution of the equations
of gas dynamics with allowance for the concentration dependence of the density. The method of [6] is used,
which leads to essentially new results.

Consider a binary mixture in a planar column closed at both ends (height 27, working gap 2d, d «< ).
The left wall is kept cooler than the right one, and the temperature difference across the column is 26. The
following convection equations [7] define the steady-state distribution of the velocity, temperature, and con~
centration

(V- V)V = — TP 4 v V4 g(BT + 9k,

0

(v.V)T = % AT, (1)
(v-V)e=Dv {Vc———;—c(l——-c)vT],

v v =0.

Parameters v, 3, v, X, D, and ¢ in (1) are taken as constant and are calculated for mean values of
the temperature, pressure, and concentiration, The boundary conditions are as follows for the planar prob-
lem in x—z coordinates:

v{d) = v{—d)y=0,
Td)=6, T(—d)y=-—80,

) T 0% J—g. g 2)
‘ ,
( vdx =0,
—i
S. {cv —D [i——-—a—c(l—c)éz ]}dx:O
0 T 5)
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Fig. 1. Dependence of n on Rs/Gr from (10).

Fig. 2. Horizontal concentration profile calculated
from (7) for n-heptane mixed with benzene (mole frac-
tion ¢, of heptane 0.335); Gr = 13.8; R = 132; Sm = 176;
$=1.68-107%;n=1.53.

We can put u =0 as d « 7 and end effects are neglected, We also assume that the temperature does not
vary along the vertical coordinate z, that the thermal-diffusion term can be put as (a/Tgpc(l—c)(8T/ ox),
and that c{(1—c) = const in the integration,

Then system (1) can be reduced to the following, where the unknowns are represented in dimension-
less form:

dapP d*
4z dx?
T o, (3)
dx?
)
0z Sm \ ox? dz?

The scale factors for distance, velocity, temperature, and pressure are d, v/d, 8, and Po vz/dz,
The above assumptions give the following form to boundary conditions (2):
o(—1) =o(1) =0,
T(—)=—1, T(1)=1,

F-.
ox J=131 (4)
1
Svdx =0,
|
j(cv—— —1-— iﬁ)dx:—
Sm 0z
The following form can be given to the solution to (3) and (4):
T =x, (5)
2 Gr 4+ Rs
= — = — (1 = (1—x)—sh — A
"0 =5 5V - sn)on [ yz (s 7 (1) —sh 7 (L= 2)sin 7. (1 + 9 } (6)
..9-_ +s
e(x; 2)= %z _ G, Ve R L1 + %) cos 2= (1—x)— s 21 —x)cos L (1+x)]. (1)
R n shy 2n +siny 2n 1/2 1/ /2 V2

This is somewhat more convenient for analysis than the form given in [6].

541



One can obtain the result of passing to the limit v — 0 in (6) and (7) if the functions in these expres-
sions are expanded as series in the small parameter n, which gives known expressions for the velocity and
concentration distributions without allowance for the effect of the concentration on the density:

v(x) = %r x(1—x?), (6a)
. Gr ¥ B x
c(x; 2) = X — — § XXX
(x; 2) = ®z +sx g Sm (10 3 T 5 ) (Ta)

The longitudinal concentration gradient % is constant and is defined by the last boundary condition:

1
vedx = 2% (8)
Sm

Integration of (8) gives

2”42—_-—-24—Gr (_Cir_ +s)+ 2[{2' ar (_G_r s) ch:/'iln——oosVQ—lL _2p E‘L—}—s)z shlffnsinv_ﬁ—it
RSt n R n R shy 2n 4-sinV2n  nd R (sh)/2n + siny 2n)?
1 Gr 2chy 2n—cos ¥ 2n :
— —_— s . —. 9
v 9ns (R + ) shy/ %n +siny/ on )

We have '(2n4 / RSm?) « 1, and the term is much less than the terms on the right in (9), for liquids
with realistic temperature gradients, and so (9) can be put as
Bi) L chy9n —cos v/ 2n __2(1 _I_?i) shy/ Znsiny/ 2n
Gr / V21 shy 2n +siny 2n Gr / (shy 2n+siny/ 2n
when one gets n and hence n. It follows directly from (10) that » is governed by Rs/Gr = [acy(l—cy)ly/BT,

for a liquid; in particular, it is not dependent on 9. We can consider Rs/Gr as a similarity number for
thermal diffusion, Figure 1 shows n(Rs/Gr).

(5+ sz (10)

The concentration dependence of the density thus alters the longitudinal concentration gradient and the
transverse concentration distribution, which casts doubt on the conclusion [4] that there are no such effects,
which was drawn from a computer solution to a system of equations for a liquid mixture in a thermal-diffu-
sion column,

We performed a numerical calculation for benzene + n-heptane with allowance for the concentration
dependence and found that it reduced the longitudinal concentration gradient by 12% and the maximum trans-
verse difference between the concentrations by 8%.

Figure 2 gives the transverse concentration distribution given by (7). The curve relates to a partic-
ular mixture, but the form is largely independent of this for liquids, though its shape is very different
from that for gases [6], which confirms a numerical calculation [4] for the nonstationary state, The liquid
curve has a special shape because the diffusion term on the right in (8) is small for a liquid whereas it is
substantial for a gas.

Our solution takes account of the concentration effect and allows one fo calculate the thermal -diffusion
constant from results for a column: one determines the vertical concentration gradient u, from which n is
calculated, which is used with the curve of Fig. 1 to find Rs /Gr, which gives o.

NOTATION

is the velocity of mixture;

is the horizontal component of velocity;

is the vertical component of velocity;

are the deviations of temperature and concentration from initial mean values of T, and ¢y;
are the deviations of pressure and density from their equilibrium values at Ty and cy;

is the kinematic viscosity;

is the thermal expansion coefficient;

™ eYH< <
T o
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y ==1/py(8p /8¢)T;p
k

X

D

a

Gr = gpd®e/ v?

R = gyd®/v?;

Sm = v/D

n= oc/ 8z;

8 = (ae/To)CD(l—Co);
4 _ 3
n* = gyd'n/vD

3O Ul o o

is the coefficient for concentration effect on density;
is the unit vector along z axis;

is the thermal diffusivity;

is the diffusivity;

is the thermal-diffusion constant;

ig the Grashof number;

is the Schmidt number;

is the diffusion Rayleigh number.
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